

Generative adversarial networks for agricultural image generation and generative super resolution

2022-05-17

Olli Niemitalo (<u>Olli.Niemitalo@hamk.fi</u>), Roman Tsypin

HAMK Smart Research Unit, Häme University of Applied Sciences, Finland

Vegetation remote sensing

- Needed for example in crop modeling in carbon sequestration research, see <u>fieldobservatory.org</u>
- Especially important when scaling up to thousands of farms

Satellite image-derived LAI and STICS model hindcast from Qvidja farm with 90 % confidence intervals. Source: <u>https://www.fieldobservatory.org/en/online-field-</u> <u>data/?site=qvidja</u>

Need to work with distributions and statistics, and plenty of uncertainty.

Generative model

 Generates data points that follow an approximate distribution of real data

Conditional generative model

• A conditional generative model randomly generates data points that follow an approximate conditional distribution of real data

Conditional generative model

• The condition can be a function of the data

Generative super resolution

• Fake data is conditioned on low-pass filtered (blurred) real data

Toy problem statement

- Acquire training images of lawns with various degrees of vegetation cover
- Train a generative model on the data
 - Given a low-resolution image of the lawn as conditioning input, the model shall sample from the approximate distribution of what the lawn might look like at high resolution
 - The model shall be able to handle arbitrarily large images

Ideally...

Toy training dataset

Least square generative adversarial network

• A machine learning method, a variant of GAN

arXiv:1406.2661 [stat.ML], arXiv:1611.04076 [cs.CV]

 Generator (G) and discriminator
 (D) networks compete to minimize their respective losses

Our super-resolution GAN training setup

 Also: additive noise, rotation and exposure augmentation of discriminator input, gradient accumulation, stochastic gradient descent with random training image selection and random cropping

Our model design

- Generator and discriminator are convolutional neural networks locality!
 - Batch normalization, no pooling layers
 - Spatial data kept 2x oversampled throughout the network using isotropic anti-aliasing layers

 translation invariance!

Generator

- Encoder-decoder with skip connections (8 level U-net)
- Noise input: 1024x1024x1, conditioning input: 1024x1024x3
- Output: 1024x1024x3
- Can generate arbitrarily large images piecemeal from deterministic noise input

Discriminator

- Encoder structure (first half of 7 level U-net)
- Input: 1024x1024x3 center-cropped to 512x512x3
- Output: 8x8x1
- Output center-cropped to 2x2x1 for adversarial loss

Early training video on another toy dataset: <u>https://youtu.be/Ecz4kHMEE7o</u>

Toy problem preliminary results

Noise input

Real data

Fake data

Toy problem preliminary results

Drone mosaic (conditioning input)

✓ "Vegetation" ✓ Nearly seamless 256x256 tiling
➤ Realistic vegetation ➤ Realistic soil

Discussion and future work

• GAN improvements

- Tune the model structure
- Design more optimal anti-aliasing filters
- Try calculating products of feature maps. Controlled bandwidth: c = a * b → bandwidth(c) = bandwidth(a) + bandwidth(b)
- Try other models than pure convolutional networks, say Vision Transformers
- Steerable network?

Discussion and future work

- Current super-resolution model drawback: Vegetation is assumed to be independent in two locations separated by tens of cm. Add a flat noise input!
- A time series of training images would be more informative than a single image from each location
- Generate 3-d models of vegetation
- Train generative models for transforming images between different sensor types with incompatible channel spectral sensitivity curves

Olli Niemitalo, data analyst

Olli.Niemitalo@hamk.fi

linkedin.com/school/hamk-häme-university-ofapplied-sciences

in

blog.hamk.fi

facebook.com/hamkuas

twitter.com/hamk_uas

0

instagram.com/hamk uas & instagram.com/hamkstories

youtube.com/user/HAMKuas YouTube

hamk uas

pinterest.com/hamkuas