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Vegetation remote sensing

• Needed for example in crop 
modeling in carbon 
sequestration research, see 
fieldobservatory.org

• Especially important when 
scaling up to thousands of 
farms
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Satellite image-derived LAI and STICS model hindcast from 
Qvidja farm with 90 % confidence intervals. Source: 
https://www.fieldobservatory.org/en/online-field-
data/?site=qvidja
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https://fieldobservatory.org/
https://www.fieldobservatory.org/en/online-field-data/?site=qvidja


Sentinel 2
satellite image

What if we could 
go from here… …to/or here … …then here, analyze,

and infer our results back?
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Image: ESA



Need to work with distributions and statistics, and plenty of uncertainty.
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Generative model
• Generates data points that follow an approximate distribution of real 

data
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Conditional generative model
• A conditional generative model randomly generates data points that 

follow an approximate conditional distribution of real data
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Conditional generative model
• The condition can be a function of the data
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Generative super resolution
• Fake data is conditioned on low-pass filtered (blurred) real data
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Toy problem statement
• Acquire training images of lawns with 

various degrees of vegetation cover

• Train a generative model on the data

• Given a low-resolution image of the 
lawn as conditioning input, the model 
shall sample from the approximate 
distribution of what the lawn might look 
like at high resolution

• The model shall be able to handle 
arbitrarily large images

Ideally…



Toy 
training 
dataset



Least square generative adversarial network
• A machine learning method, a 

variant of GAN

arXiv:1406.2661 [stat.ML], arXiv:1611.04076 [cs.CV]

• Generator (G) and discriminator 
(D) networks compete to 
minimize their respective losses
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Our super-resolution GAN training setup
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• Also: additive noise, rotation and exposure augmentation of discriminator 
input, gradient accumulation, stochastic gradient descent with random training 
image selection and random cropping

Direct 
loss



Our model design
• Generator and discriminator are convolutional neural networks – locality!

• Batch normalization, no pooling layers

• Spatial data kept 2x oversampled throughout the network using isotropic anti-aliasing layers 
– translation invariance!

Generator

• Encoder-decoder with skip connections (8 level U-net)

• Noise input: 1024x1024x1, conditioning input: 
1024x1024x3

• Output: 1024x1024x3

• Can generate arbitrarily large images piecemeal from 
deterministic noise input

Discriminator

• Encoder structure (first half of 7 level U-net)

• Input: 1024x1024x3 center-cropped to 512x512x3

• Output: 8x8x1

• Output center-cropped to 2x2x1 for adversarial loss

Early training video on another toy dataset: https://youtu.be/Ecz4kHMEE7o

https://youtu.be/Ecz4kHMEE7o


Toy problem preliminary results

Noise input Real data Fake data



Drone mosaic
(conditioning input)

Toy problem preliminary results

✔️”Vegetation” ✔️Nearly seamless 256x256 tiling
❌Realistic vegetation ❌Realistic soil

Generated
image



Discussion and future work
• GAN improvements

• Tune the model structure

• Design more optimal anti-aliasing filters

• Try calculating products of feature maps. Controlled bandwidth: c = a * b ➔
bandwidth(c) = bandwidth(a) + bandwidth(b)

• Try other models than pure convolutional networks, say Vision Transformers

• Steerable network?



Discussion and future work
• Current super-resolution model drawback: Vegetation is assumed to be 

independent in two locations separated by tens of cm. Add a flat noise 
input!

• A time series of training images would be more informative than a single 
image from each location

• Generate 3-d models of vegetation

• Train generative models for transforming images between different sensor 
types with incompatible channel spectral sensitivity curves
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