HAMK | smart Catch e o e e
the AT
carbon LN AN '

CLIMATE SOLUTIONS IN
THE LAND USE SECTOR

HAMEEN AMMATTIKORKEAKOULU
HAME UNIVERSITY OF APPLIED SCIENCES RESEARCH UNIT

Generative adversarial
networks for agricultural
image generation and
generative super resolution

2022-05-17

Olli Niemitalo (Olli.Niemitalo@ hamk.fi),
Roman Tsypin

HAMK Smart Research Unit, Hime University of
Applied Sciences, Finland



mailto:Olli.Niemitalo@hamk.fi

Vegetation remote sensing
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Satellite image-derived LAl and STICS model hindcast from
Qvidja farm with 90 % confidence intervals. Source:
https://www.fieldobservatory.org/en/online-field-
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Sentinel 2
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What if we could
go from here... ...to/or here ... ...then here, analyze,

and infer our results back?
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Generative model

* Generates data points that follow an approximate distribution of real

Generative
model
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Conditional generative model

* A conditional generative model randomly generates data points that
follow an approximate conditional distribution of real data
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Conditional generative model

* The condition can be a function of the data

Condition Classify
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Generative super resolution

* Fake data is conditioned on low-pass filtered (blurred) real data

Condition

approximates M Real data

HAMK | Smart

MMATTI LU
HAME UNIVERSITY OF APPLIED SCIENCES RESEARCH UNIT




Toy problem statement

e Acquire training images of lawns with
various degrees of vegetation cover

Ideally...

* Train a generative model on the data

* Given a low-resolution image of the
lawn as conditioning input, the model
shall sample from the approximate *
distribution of what the lawn might look =
like at high resolution

* The model shall be able to handle
arbitrarily large images
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Toy
training
dataset
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Least square generative adversarial network

* A machine learning method, a * Generator (G) and discriminator
variant of GAN (D) networks compete to
arXiv:1406.2661 [stat.ML], arXiv:1611.04076 [cs.CV] minimize their respective losses

Real data -[ } MSE(x, 1)
4+ =) Discriminator loss

Fake »[ MSE(x, -1)
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Our super-resolution GAN training setup

low-pass
filter @ ooldata -[ % MSE(x, 1)

Discriminator
loss

Noise - mm) Fake #[ } MSE(x, -1)

low-pass
filter

Generator loss

* Also: additive noise, rotation and exposure augmentation of discriminator
HAMK | Smart input, gradient accumulation, stochastic gradient descent with random training
image selection and random cropping
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Our model design

* Generator and discriminator are convolutional neural networks — locality!

e Batch normalization, no pooling layers

* Spatial data kept 2x oversampled throughout the network using isotropic anti-aliasing layers

— translation invariance!

Generator
* Encoder-decoder with skip connections (8 level U-net)

* Noiseinput: 1024x1024x1, conditioninginput:
1024x1024x3

* QOutput: 1024x1024x3

e Cangenerate arbitrarily large images piecemeal from
deterministic noise input
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Discriminator

* Encoder structure (first half of 7 level U-net)

* Input: 1024x1024x3 center-cropped to 512x512x3
* QOutput: 8x8x1

e Qutput center-cropped to 2x2x1 for adversarial loss

Early trainingvideo on another toy dataset: https://youtu.be/Ecz4kHMEE70
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Toy problem preliminary results
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Toy problem preliminary results

Drone mosaic | lf Generated image Generated |magen
(conditioning input) §zoomedin . 3 zoomed in more !

Generated
Image
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Discussion and future work

* GAN improvements
* Tune the model structure
* Design more optimal anti-aliasing filters

* Try calculating products of feature maps. Controlled bandwidth:c=a * b =
bandwidth(c) = bandwidth(a) + bandwidth(b)

* Try other models than pure convolutional networks, say Vision Transformers

e Steerable network?
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Discussion and future work

* Current super-resolution model drawback: Vegetation is assumed to be
independent in two locations separated by tens of cm. Add a flat noise
input!

* A time series of training images would be more informative than a single
image from each location

* Generate 3-d models of vegetation

* Train generative models for transforming images between different sensor
types with incompatible channel spectral sensitivity curves
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